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Figure: Distributed Network Example
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Problem

x€RY

min f(x) = Z fi(x)

Each function f; is only known toagent iV i=1,2,....n

(a) Sensor Networks (b) Machine Learning (c) Signal Processing
You et al. 2013 Tom Taulli, Forbes 2019 Signal Processing, MIT OCW 2011
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Consensus Optimization Problem

n
min f;i(x;
X,'ERd ) ( )
i=1
st. xp=x; Vi,je&
Each node keeps a local copy x; Vi=1,2,...,n
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Figure: Distributed Network Example
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Consensus Optimization Problem
in f(X) = fi(xi

min, £(x) ; ()

st. (W®Ig)x=x

> X is a concatenation of all local x;’s

» W is a symmetric doubly-stochastic matrix that defines the
connections in the network

x1 Wil Wi e Wi
X2 W21 Wop - Won
x=|_ |eRM wW=| o T e RM™

Xn Wn1 Wp2 ~--- Whpp
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Consensus Optimization Problem

min f(x fi(xi)
x;€Rd Z l
s.t. Zx:x

> X is a concatenation of all local x;’s

» W is a symmetric doubly-stochastic matrix that defines the
connections in the network

:! — ‘AI Q@ Lj c Egn(fx nd

4/26



The University of Texas at Austin

Cockrell School of Engineering

Literature Review

1. Sublinearly Converging Methods
DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al.
2010, Tsianos et al. 2012], NN [Mokhtari et al. 2017], NEAR-DGD [Berahas et al.
2018], ...

2. Linearly Converging Methods
Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi
et al. 2015], SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015],
Aug-DGM [Xu et al. 2015], LU-GT [Nguyen et al. 2022], ...

3. Asynchronous Methods
[Bertsekas, Tsitsiklis, et al. 1989], [Ram, Veeravalli, and Nedic 2009], HOGWILD [Recht
et al. 2011], [Wei and Ozdaglar 2013], ...

4. Stochastic Algorithms
DSGT and GSGT [Pu and Nedi¢ 2021], ProxiSkip [Mishchenko et al. 2022], ...
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Gradient Tracking Methods

Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015],
SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015], Aug-DGM [Xu et al. 2015], ...

Xit1 = ZXk — Y,
Yirr = ZYy + V(X 1) — VE(xk)

X1,k Y1k Vh(x1k)
X2 k Y2,k VhH(xo,k

Xk=1| .| erRM 'y, =[] eR™ Vix)= (, ) e R™
Xn, k Yn,k an(xn,k)

» Use an additional dual variable y, to track the gradient
» Constant «: Linear converge to solution
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Gradient Tracking Methods

Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015],
SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015], Aug-DGM [Xu et al. 2015], ...

DiGing: k1T 2N~ i
. Yit1 = ZYi + VE(Xir1) — V(%)
X1 = Z( Xk — aYy),

Aug-DGM:
Yir1 = Z(y, + VE(Xp1) — VF(xy))
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Gradient Tracking Methods

Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015],
SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015], Aug-DGM [Xu et al. 2015], ...

Diging: <t~ ZXk e
' Yirr = Z2Y, + VE(Xpq1) — VE(xk)
X1 = Z( Xk — aYy),

Aug-DGM:
Yirr = Z(Yi + VIXet1) — VE(x,))

» Choice of information shared affects both convergence and
practical implementation

» Applications require a different composition communication
and computation steps to achieve overall efficiency
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This Talk

1. We develop a gradient tracking algorithmic framework (GTA)
to unify gradient tracking methods.

2. Provide flexibility in number of communication and
computation steps in each iteration in GTA.

3. Provide sufficient conditions for linear rate of convergence.

4. lllustrate benefits of this flexibility with numerical
experiments.
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GTA Framework

W € R™" — mixing matrix
» Symmetric, Doubly Stochastic
> Represents the network, i.e., w; > 0 and w;; > 0iff (i,j) € £

> Hw-g  =8€l0)
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GTA Framework

W € R™" — mixing matrix
» Symmetric, Doubly Stochastic
> Represents the network, i.e., w; > 0 and w;; > 0iff (i,j) € £

> Hw-g  =8€l0)

W1, Wy, W3, W, € R™" — communication matrices
» Symmetric, Doubly Stochastic
> Represents a subset of edges of the network, i.e., wy ;; > 0 and
wyj > 0if (i,j) € Eelsewy jj =0

> Hw,-—lnlnT =Be1] ¥ i=1234

n
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GTA Framework

W1, Wy, W3, W, — communication matrices
Single communication and computation step in each iteration.

Xki1 = lek — aZka,
Yir1 = 23Yy + Za(VE(Xpy1) — VE(xk))

whereZ; =W; ® Iy e R"*nd vy j =123 4
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GTA Framework Special Cases

Mixing matrixWandZ =W ® Iy
GTA-1 (DIGing, EXTRA, ...)

Xit1 = ZX, — QY

Yir1 = 2y + VE(Xq1) — V()
GTA-2 (NEXT, SONATA, ...)

Xi+1 = Z(Xk — ayy)

Vi1 = ZYy + VF(Xkr1) — VE(xy)
GTA-3 (Aug-DGM, ATC-DIGing, ...)

Xpy1 = Z(X — ayy)

Yirr = Z(Yx + VEXir1) — VF(xk))
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GTA Framework - Convergence Analysis

Definitions

n

1 1 —
Xk = . in,k, Yk = . Zyi,k
i=1

i=1
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GTA Framework - Convergence Analysis

Definitions
1 o 1<
X = in,k, Ve =+ Z.yi,k
i=1 i=1
I — x| > “
Xk — )_< 2 ~ )_<k ~ _)7k
re= |[Xk = Xkll2| , X = : €R™, Y= | . e R™
1Yx — ¥ell2
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GTA Framework - Convergence Analysis

Definitions

1o 1 —
Xk = . E Xiks Yk = . E Yik
i—1 i=1

1% — <°| o i
Xk — )_< 2 ~ )?k ~ _)7k
re= |[Xk = Xkll2| , X = | € R™, Ye=1.| € R
1Yk — Yill2 _
Xk Yk
Assumption

1. The function f is u > 0 strongly convex and each component
function f; has L > 0 Lipschitz continuous gradients.
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GTA Framework - Step size condition

Xki41 = lek — aZka,
Yir1 = Z3Yx + Za(VE(Xk11) — V(X))

Suppose Assumption 1 holds and p1, B3 < 1in GTA Framework, then
|lri||2 goes to O at a linear rate if

118 (1-pir28) 0B 5s) (rct])
a< m'”{u e, Gt (\/1 Ba(1 P11 25,2 1)}

where k = i
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GTA Framework Cases - Step size condition

rk|l2 goes to 0 at a linear rate for the

Suppose Assumption 1 holds,
special cases if

2
. : 1— 3—-3 1—
GTA-T: a < min {LB, T <\/1 +A4(k+1) <£> _ 1> }

. : _ 1 N2
GTA-2: & < min {1L5, A <\/1 +a+ 18 (55) - 1) }

2
GTA-3: a < min {{Tg’m (\/1—}—4(&—}—1) (%) - 1)}

where k = ﬁ
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GTA Framework Cases - Rate of Convergence

Suppose Assumption 1 holds and o < 1, ||r||2 goes to 0 at a linear
rate upper bounded by the following express:ons

GTA-1: max{1- L, 8+ VaL (25+ Vi) |
GTA-2: max{l—%, /3+x/ﬂ(2.5+\/@)}

GTA-3: max{ 7“,5(1+F(25+f))}

where k = ﬁ
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GTA Framework - Numerical Experiments

Almost Full network 3 = 0.25

1074
10tk —
Teee o
5 . 1 .
t . B 8
LU “e. =
0 N - w
s . T @
EJ; " e g e
o “u, v ® T
N e Ty
L Y e
Y | -10 -
W1 =2 3 4 5 0% —1 2 3 4 5
Iterations led Iterations led

~e- GTA1(1,1) e GIA2(1,1) e GTA-3(L, 1)
Figure: Quadratics, n = 16, d = 10, x = 10*
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GTA Framework - Numerical Experiments

Cyclic Network 5 =0.992
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Figure: Quadratics, n = 16, d = 10, x = 10*
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Multiple Communications

2

3

(a) Single Communication

09 01 0 O
0.1 08 01 O
0 01 08 0.1
0 0 01 09

W =
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 2 Communications

09 01 0 O
0.1 08 01 O
0 01 08 0.1
0 0 01 09

W =
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 2 Communications
09 01 O 0 0.82 0.17 0.01 O
W — 0.1 0.8 0.1 O W2 — 0.17 0.66 0.16 0.01
|0 01 08 0.1 ~10.01 0.16 0.66 0.17

0 0 01 09 0 0.01 0.17 0.82
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 200 Communications
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Multiple Communications

2

3

(a) Single Communication

09 01 0 O
01 08 01 O
0 01 08 01
0 0 01 09

W =

(b) 200 Communications

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
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GTA Framework - Multiple Communications

nc — #of communication steps

W, — W Vi=1,23,4
B — B Vi=1,23,4
Z, 52 =Wl Vi=1,23,4
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GTA Framework - Multiple Communications

nc — #of communication steps

W, — W Vi=1,23,4
B — B Vi=1,23,4
Z, 52 =Wl Vi=1,23,4

X1 = 27Xk — aZ°Y,,
Yirr = 23, + 2 (VX 1) — VE(xy))
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GTA Framework - Multiple Communications

nc — #of communication steps

W, — W Vi=1,23,4
B — B Vi=1,23,4
Z, 52 =Wl Vi=1,23,4

Xiy1 = Z1Xg — aZ5°Y,,
Yir1 = 25y + Z3°(VE(Xki1) — V(X))
With more communcation, i.e., increase in n.

» The step size condition increases
» The rate of convergence decreases
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GTA Special Cases - Multiple Communications

Mixing matrix W and Z"< = W" ® I,

GTA-1

Xit1 = Z"X, — ay,

Vi1 =27y, + VE(Xr1) — V(X )
GTA-2

Xir1 = 2™ (X — ayy)

Vi1 = 27y, + VE(Xp11) — VF(X)
GTA-3

Xpy1 = Z" (X — ayy)
Yirr = 2" (Yi + VE(Xi11) — V(X))

17126
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GTA Multiple Communications - Rate of Convergence

Suppose Assumption 1 holds, number of communications is at least 1
(ne >1)and o < L, r¢||2 goes to 0 at a linear rate upper bounded by
the following expressions

For GTA-1 max{l - % B +Val (2.5 + \/E)}

For GTA-2 max{l — % B +Val (2.5 + \/W)}
For GTA-3 max{ ﬁ"c<1+f(25+\f))}

where k = ﬁ
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GTA Multiple Communications - Numerical
Experiments

Cyclic Network 5 =0.992

107
10%F
..: 100 w
o 4 6.
= 2 R e,
E § e
2107} S -
8 S S
W
T """“::""%.r
N
-2 -6
107% I 2 3 4 5 1075 2 3 4 5
Iterations le4d Iterations led

~e- GTAL(L,1) e GTA2(1,1) e GTA-3(1,1)
~¥- GTA1(5,1) v~ GTA2(5,1) v GTA-3(5,1)

Figure: Quadratics, n = 16, d = 10, k = 10* 19/26
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GTA Multiple Communications - Numerical
Experiments

Cyclic Network 5 =0.992

1011F

10°

107!

Optimization Error
[
Consensus Error

1072 > E . 1076 > = ,
0 L 2 3 4 5 0 L 2 3 4 5
Communications led Communications le4d

~e- GTAL(1,1) e GTA2(L,1) e GTA-3(1,1)
~v- GTA1(5,1) v GTA2(5,1) ¥ GTA-3(5,1)

Figure: Quadratics, n = 16, d = 10, k = 10* 19/26
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GTA - Multiple Communications and Computations

ne — # of communication steps
ng — # of computation steps

Xit1,1 = Z1Kpe , — aZQCyk’ng
Yir1,r = Z5Yin, + 255 (VE(Xkt1,1) — VE(Xkn,))
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GTA - Multiple Communications and Computations

ne — # of communication steps
ng — # of computation steps
X1, = Z{Xk,n, — 0Ly Yy
Yir11 = Z3Yun, T 23 (VE(Xir1,1) — V(X n, )
Forj —1,2,...,n, — 1
Xk+1,j+1 = Xk41,j = Wiy,

Yit1j+1 = Yit1j+1 + VE(Xk1j41) — VE(Xpi1)
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GTA - Multiple Communications and Computations

ne — # of communication steps
ng — # of computation steps

Under previous assumptions, [31, 53 < 1, number of communication
steps is at least one (n. > 1) and number of computation steps is finite
(1 < ng < o0), then 3 o > 0, s.t. ||ri||2 goes to O at a linear rate.
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GTA - Multiple Communications and Computations

ne — # of communication steps
ng — # of computation steps

Under previous assumptions, [31, 53 < 1, number of communication
steps is at least one (n. > 1) and number of computation steps is finite
(1 < ng < o0), then 3 o > 0, s.t. ||ri||2 goes to O at a linear rate.

» The step size increases with an increase in n, i.e., number of
communication steps.

» The step size is inversely proportional to ng, i.e., number of
computation steps.

21/26
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GTA Special Cases

GTA-T Xi+11 = 27Kk, = Y,

Yir11 =Z"Yn, + VEXir11) — VE(Xk,n, )
— ng — 1 compute steps

GTA-2 Xk+1,1 = z" (kag - aYk,ng)

Yir11=Z"Yn, + VEXir11) — VE(Xin, )
— ng — 1 compute steps

GTA-3 Xit11 = 2™ (Xk,ng - ozyk,,,g)

Yir1n =2 (yk,ng + VF(Xki1,1) — Vf(Xk,ng)>
— ng — 1 compute steps
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GTA Special Cases

ne — # of communication steps
ng — # of computation steps

If the same step size is employed in all three methods, their
convergence rates can be ordered as:

GTA-3(nc, ng) < GTA-2(nc, ng) < GTA-1(nc, ng)
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GTA Multiple Communications and Computations -
Numerical Experiments

Cyclic Network 5 =0.992
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Figure: Quadratics, n = 16, d = 10, x = 10*
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GTA Multiple Communications and Computations -
Numerical Experiments

Cyclic Network 5 =0.992

1oL
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S}
4

10° e

Optimization Error
) d
Consensus Error

0 2 3 4 5 0 L 2 3 4 5
Gradients le4 Gradients led

e GTA-1(1,1) e GTA-2(1,1) —e— GTA-3(1,1)
~#— GTA-1(5,20) % GTA2(520) —#- GTA3(5,20)

Figure: Quadratics, n = 16, d = 10, x = 10*
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GTA Multiple Communications and Computations -
Numerical Experiments

Cyclic Network 5 =0.992
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c 10° %1073
e S
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£ %104
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Communications led Communications le4

e~ GTA1(1,1) e GTA-2(1,1) —e- GTA-3(1,1)
~w#— GTA-1(5,20) % GTA2(5,20) % GTA3 (5, 20)

Figure: Quadratics, n = 16, d = 10, x = 10*
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Flexible Randomized Gradient Tracking Algorithm

Performing communications less often randomly
FedAvg [McMahan et al. 2017], FedLin [Mitra et al. 2021], Scaffold [Karimireddy et al.
2020], Scaffnew [Mishchenko et al. 2022], ...
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Flexible Randomized Gradient Tracking Algorithm
Performing communications less often randomly

FedAvg [McMahan et al. 2017], FedLin [Mitra et al. 2021], Scaffold [Karimireddy et al.
2020], Scaffnew [Mishchenko et al. 2022], ...

With probability p:  Xx11 = Z{Xk — aZ5°Y,
Vi1 = Z3Yi + 27 (VEXey1) — V(%))

Else: X1 = Xk — Yy,
Yier1 = Y + VIXiq1) — V()
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Flexible Randomized Gradient Tracking Algorithm

Performing communications less often randomly
FedAvg [McMahan et al. 2017], FedLin [Mitra et al. 2021], Scaffold [Karimireddy et al.
2020], Scaffnew [Mishchenko et al. 2022], ...

With probability p:  Xk41 = Z{*X — aZ5°y,,
Yir1 = 23 + Z5 (V(Xk11) — V(X))

Else: Xp1 = X — Yy,
Yirr = Y + VEXpq1) — V()

» Less rigid, achieves the desired balance in expectation
» Good theoretical and empirical performance
» Paper soon to follow !!
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Conclusions

1. We provide a unifying gradient tracking algorithmic
framework that allows performing theoretical comparisons
between different gradient tracking methods.

2. We provide the flexibility to perform any composition of
communication and computation steps in each iteration and
show linear rate of convergence.

3. Adapting your algorithm to the system with this flexibility can
allow you to improve convergence rate.

Paper available at : https://arxiv.org/abs/2303.14289

26/26


https://arxiv.org/abs/2303.14289

[E8] The University of Texas at Austin

Cockrell School of Engineering

Thank Youl!

Questions?

174



The University of Texas at Austin

& Cockrell School of Engineering

Backup Slides

2/4



The University of Texas at Austin
Cockrell School of Engineering

rk+1 S A(nc)rk

1—ap % 0
Alne) =1 0 e o
gc + aIBZcL

Va2 BReL(|Z]° — Idll2 + al)
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Mk+1 < B(”m ”g)rka
where B(nc,ng) = A(nc, ng) + alL(ng — 1)E(nc, ng)

(- o) 500 an)) 0
A(ne, ng) = 0 1 a((ng — 1)B1° + B5°)
LVnaBgel?  BReL(]|Z] — lngll2 + al) B3¢+ aB, L
[ alng a\%g a—\/"f
E(nc,ng) = Vnaléi(ne, ng) aldi(ne, ng) adi(ne, ng)
| VnLoa(ne,ng)  Loo(ne,ng)  02(ne, ng)

and
01(ne, ng) = 265 + B (ng — 2),

02 ng) =2 (5123 = hnallz + 5 + 85
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