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Problem

min
x∈Rp

f (x) =
n∑

i=1

fi (x)

Each function fi is only known to agent i ∀ i = 1, 2, ..., n
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Figure: Distributed Network Example
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Problem

min
x∈Rp

f (x) =
n∑

i=1

fi (x)

Each function fi is only known to agent i ∀ i = 1, 2, ..., n

(a) Sensor Networks
You et al. 2013

(b) Machine Learning
Tom Taulli, Forbes 2019

(c) Signal Processing
Signal Processing, SINTEF 2022
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Consensus Optimization Problem

min
xi∈Rp

n∑
i=1

fi (xi )

s.t. xi = xj ∀ i , j ∈ E
Each node keeps a local copy xi ∀ i = 1, 2, ..., n
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Figure: Distributed Network Example
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Consensus Optimization Problem

min
xi∈Rp

f (x) =
n∑

i=1

fi (xi )

s.t. (W ⊗ Ip)x = x

▶ x is a concatenation of all local xi ’s
▶ W is a symmetric doubly-stochastic matrix that defines the

connections in the network

x =


x1
x2
...
xn

 ∈ Rnp, W =


w11 w12 · · · w1n
w21 w22 · · · w2n
...

... . . . ...
wn1 wn2 · · · wnn

 ∈ Rn×n

4 / 25



Consensus Optimization Problem

min
xi∈Rp

f (x) =
n∑

i=1

fi (xi )

s.t. Z x = x

▶ x is a concatenation of all local xi ’s
▶ W is a symmetric doubly-stochastic matrix that defines the

connections in the network

Z = W ⊗ Ip ∈ Rnp×np
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Literature Review
1. Sublinearly Converging Methods

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al.
2010, Tsianos et al. 2012], NN [Mokhtari et al. 2017], NEAR-DGD [Berahas et al.
2018], ...

2. Linearly Converging Methods
Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi
et al. 2015], SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015],
Aug-DGM [Xu et al. 2015], ...

3. Asynchronous Methods
[Bertsekas, Tsitsiklis, et al. 1989], [Ram, Veeravalli, and Nedic 2009], HOGWILD [Recht
et al. 2011], [Wei and Ozdaglar 2013] ...

4. Stochastic Algorithms
DSGT and GSGT [Pu and Nedić 2021], ProxiSkip [Mishchenko et al. 2022], ...
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Distributed Gradient Descent (DGD)
DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos
et al. 2012]

xk+1 = Z xk︸︷︷︸
Communication

− α ∇f(xk)︸ ︷︷ ︸
Computation

xk =


x1,k
x2,k
...

xn,k

 ∈ Rnp, ∇f(xk) =


∇f1(x1,k)
∇f2(x2,k)

...
∇fn(xn,k)

 ∈ Rnp

▶ Constant (α) : Linear Convergence to neighbourhood O(α)

▶ Diminishing (α) : Sublinear convergence to solution
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Distributed Gradient Descent (DGD)
DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos
et al. 2012]

xk+1 = Z xk︸︷︷︸
Communication

− α ∇f(xk)︸ ︷︷ ︸
Computation

[Berahas et al. 2018] proposed a variant of DGD where increasing
communications achieves linear convergence under constant α.
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Gradient Tracking Algorithms
Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015],
SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015], Aug-DGM [Xu et al. 2015], ...

xk+1 = Z xk − αyk ,
yk+1 = Z yk +∇f (xk+1)−∇f (xk)

xk =


x1,k
x2,k
...

xn,k

 ∈ Rnp, yk =


y1,k
y2,k
...

yn,k

 ∈ Rnp, ∇f(xk) =


∇f1(x1,k)
∇f2(x2,k)

...
∇fn(xn,k)

 ∈ Rnp

▶ Use an additional dual variable yk to track the gradient
▶ Constant α : Linear converge to solution
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This Talk

1. We develop generalised gradient tracking algorithms for
distributed optimization with flexibility in:

– Communication Structure
– Multiple Communication Steps
– Multiple Computation Steps

2. Provide convergence conditions for each level of flexibility.

3. Illustrate benefits of these methods with numerical analysis.
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Base Algorithm

Single communication and computation steps in each iteration.

xk+1 = Z1xk − αZ2yk ,
yk+1 = Z3yk + Z4(∇f(xk+1)−∇f(xk))

▶ Each mixing matrixW1,W2,W3 andW4 is symmetric and
doubly stochastic.

▶ β1, β2, β3 and β4 are the corresponding 2nd highest
eigenvalues.
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Base Algorithm

Definitions

x̄k =
1
n

n∑
i=1

xi ,k , ȳk =
1
n

n∑
i=1

yi ,k
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Base Algorithm

Definitions

x̄k =
1
n

n∑
i=1

xi ,k , ȳk =
1
n

n∑
i=1

yi ,k

x̄k =


x̄k
x̄k
...
x̄k

 ∈ Rnp, ȳk =


ȳk
ȳk
...
ȳk

 ∈ Rnp, rk =

∥x̄k − x∗∥2
∥xk − x̄k∥2
∥yk − ȳk∥2
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Base Algorithm

Assumption
1. Each component function fi is µ > 0 strongly convex and has

L > 0 Lipschitz continuous gradients.
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Base Algorithm

Assumption
1. Each component function fi is µ > 0 strongly convex and has

L > 0 Lipschitz continuous gradients.

Theorem
Suppose Assumption 1 holds and β1, β3 < 1 in Base Algorithm, then
∃ α > 0, s.t. ∥rk∥2 goes to 0 at a linear rate.

xk+1 = Z1xk − αZ2yk ,
yk+1 = Z3yk + Z4(∇f(xk+1)−∇f(xk))
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Base Algorithm Cases

The mixing matrix W has β < 1 , Z = W ⊗ Ip

GTM_1 (DIGing, EXTRA, ...)
xk+1 = Zxk − αyk
yk+1 = Zyk +∇f(xk+1)−∇f(xk)

GTM_2 (NEXT, SONATA, ...)
xk+1 = Z (xk − αyk)
yk+1 = Zyk +∇f(xk+1)−∇f(xk)

GTM_3 (Aug-DMM, ATC-DIGing, ...)
xk+1 = Z (xk − αyk)
yk+1 = Z (yk +∇f(xk+1)−∇f(xk))
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Base Algorithm Cases - Rate of Convergence

Theorem
Suppose Assumption 1 holds and α ≤ 1

L , ∥rk∥2 goes to 0 at a linear
rate upper bounded by the following expressions

For GTM_1 max
{

1 − αµ

2
, β +

√
αL

(
2.5 +

√
κ
)}

For GTM_2 max
{

1 − αµ

2
, β +

√
αL

(
2.5 +

√
κβ

)}
For GTM_3 max

{
1 − αµ

2
, β

(
1 +

√
αL

(
2.5 +

√
κ
))}

where κ = L
µ .
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Base Algorithm Cases - Numerical Experiments

Almost Full network β = 0.25

Figure: Quadratics, n = 16, p = 10, κ = 104
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Base Algorithm Cases - Numerical Experiments

Cyclic Network β = 0.992

Figure: Quadratics, n = 16, p = 10, κ = 104
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Multiple Communications

1

2 3

4

(a) Single Communication

W =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.1 0.9
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(b) 2 Communications

W =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
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Multiple Communications

1

2 3

4

(a) Single Communication

1

2 3

4

(b) 2 Communications

W =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.1 0.9

 W 2 =


0.82 0.17 0.01 0
0.17 0.66 0.16 0.01
0.01 0.16 0.66 0.17
0 0.01 0.17 0.82
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Multiple Communications

1
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4

(a) Single Communication

1

2 3
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(b) 200 Communications
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Multiple Communications

1

2 3

4

(a) Single Communication

1

2 3

4

(b) 200 Communications

W =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.1 0.9

 W 200 =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
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Multiple Communications

t → # of communication steps

xk+1 = Zt1xk − αZt2yk ,
yk+1 = Zt3yk + Zt4(∇f(xk+1)−∇f(xk))
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Multiple Communications Cases

GTM_1

xk+1 = Ztxk − αyk
yk+1 = Ztyk +∇f(xk+1)−∇f(xk)

GTM_2

xk+1 = Zt (xk − αyk)
yk+1 = Ztyk +∇f(xk+1)−∇f(xk)

GTM_3

xk+1 = Zt (xk − αyk)
yk+1 = Zt (yk +∇f(xk+1)−∇f(xk))
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Multiple Communications - Rate of Convergence

Theorem
Suppose Assumption 1 holds, number of communications is atleast 1
(t ≥ 1) and α ≤ 1

L , ∥rk∥2 goes to 0 at a linear rate upper bounded by
the following expressions

For GTM_1 max
{

1 − αµ

2
, βt +

√
αL

(
2.5 +

√
κ
)}

For GTM_2 max
{

1 − αµ

2
, βt +

√
αL

(
2.5 +

√
κβt

)}
For GTM_3 max

{
1 − αµ

2
, βt

(
1 +

√
αL

(
2.5 +

√
κ
))}

where κ = L
µ .
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Multiple Communications - Numerical Experiments

Cyclic Network β = 0.992

Figure: Quadratics, n = 16, p = 10, κ = 104
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Multiple Communications and Computations

t → # of communication steps
g → # of computation steps

u1 = xk
v1 = yk

For i → 1, 2, ..., g − 1
ui+1 = ui − αvi ,
vi+1 = vi +∇f(ui+1)−∇f(uu)

xk+1 = Zt1ug − αZt2vg ,
yk+1 = Zt3vg + Zt4(∇f(xk+1)−∇f(vg ))
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Multiple Communications and Computations

t → # of communication steps
g → # of computation steps

Theorem
Suppose Assumption 1 holds, β1, β3 < 1, number of communication
steps is at least one (t ≥ 1) and number of computation steps is finite
(g < ∞), then ∃ α > 0, s.t. ∥rk∥2 goes to 0 at a linear rate.
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Multiple Communications and Computations

t → # of communication steps
g → # of computation steps

Theorem
Suppose Assumption 1 holds, β1, β3 < 1, number of communication
steps is at least one (t ≥ 1) and number of computation steps is finite
(g < ∞), then ∃ α > 0, s.t. ∥rk∥2 goes to 0 at a linear rate.

Quantifying effect of multiple computations steps is ongoing work.
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Multiple Communications and Computations Cases
GTM_1

xk+1 = Ztug − αvg
yk+1 = Ztvg +∇f(xk+1)−∇f(ug )

→ g − 1 compute steps
GTM_2

xk+1 = Zt (ug − αvg )
yk+1 = Ztvg +∇f(xk+1)−∇f(ug )

→ g − 1 compute steps
GTM_3

xk+1 = Zt (ug − αvg )
yk+1 = Zt (vg +∇f(xk+1)−∇f(ug ))

→ g − 1 compute steps
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Multiple Communications and Computations -
Numerical Experiments

Cyclic Network β = 0.992

Figure: Quadratics, n = 16, p = 10, κ = 104
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Conclusions

1. We propose generalised gradient tracking algorithms that
provide flexibility with respect to communication structure,
communication and computation overhead.

2. Adapting your algorithm to the system with this flexibility can
allow you to improve convergence rate.
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Thank You!
Questions?
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