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Figure: Distributed Network Example
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Problem

LIMORPILD

Each function f; is only known toagent iV i=1,2,....n

(a) Sensor Networks (b) Machine Learning (c) Signal Processing
You et al. 2013 Tom Taulli, Forbes 2019 Signal Processing, SINTEF 2022
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Consensus Optimization Problem

n
min > fi(x)
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st. xp=x; Vi,je&
Each node keeps a local copy x; Vi=1,2,...,n
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Figure: Distributed Network Example
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Consensus Optimization Problem
min £(x) = ; fi(xi)
st. (W hh)x=x

> X is a concatenation of all local x;’s

» W is a symmetric doubly-stochastic matrix that defines the
connections in the network

X1 wir wi2 - Wip
X Wo1 W2 - W2p

2
x=|.|e€eR®” W=]| . . | e R™
Xn Wn1 Wp2 -+ Wpp
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Consensus Optimization Problem

min f(x) fi(xi)
x;€ERP Z !
s.it. ZX=X

> X is a concatenation of all local x;’s

» W is a symmetric doubly-stochastic matrix that defines the
connections in the network

Z=W®Il,cRWP*»
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Literature Review

1. Sublinearly Converging Methods
DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al.
2010, Tsianos et al. 2012], NN [Mokhtari et al. 2017], NEAR-DGD [Berahas et al.
2018], ...

2. Linearly Converging Methods
Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi
et al. 2015], SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015],
Aug-DGM [Xu et al. 2015], ...

3. Asynchronous Methods
[Bertsekas, Tsitsiklis, et al. 1989], [Ram, Veeravalli, and Nedic 2009], HOGWILD [Recht
et al. 2011], [Wei and Ozdaglar 2013] ...

4. Stochastic Algorithms
DSGT and GSGT [Pu and Nedi¢ 2021], ProxiSkip [Mishchenko et al. 2022], ...
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Distributed Gradient Descent (DGD)

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos
etal. 2012]

Xpi1 = Z\)i,; — «a Vf(xk)
Communication Computation
X1,k V(1)
X2, k Vi (x2.k)
xe= | | eRrR™, VE(xi) = , € R"™
Xn, k an(ka)

» Constant (a) : Linear Convergence to neighbourhood O(«)
» Diminishing («) : Sublinear convergence to solution
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Distributed Gradient Descent (DGD)

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos
etal. 2012]

Xpi1 = Z\)i,; — «a Vf(xk)
Communication Computation

[Berahas et al. 2018] proposed a variant of DGD where increasing
communications achieves linear convergence under constant a.
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Gradient Tracking Algorithms

Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015],
SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015], Aug-DGM [Xu et al. 2015], ...

Xp41 = zxk — Yy,
Yir1 =2, + VE(Xpy1) — VF(Xk)

X1,k Y1,k Vi (xik)
X2 k Y2,k Vi (xo,k

Xk=1| . | eR™ y. =|.]eR™” Vf(xg)= (, ) e R
Xn, k Yn k an(xn,k)

» Use an additional dual variable y, to track the gradient
» Constant «: Linear converge to solution
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This Talk

1. We develop generalised gradient tracking algorithms for
distributed optimization with flexibility in:

- Communication Structure
- Multiple Communication Steps
- Multiple Computation Steps

2. Provide convergence conditions for each level of flexibility.

3. lllustrate benefits of these methods with numerical analysis.
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Base Algorithm

Single communication and computation steps in each iteration.

Xki11 = lek — aZka,
Yir1 = Z3Yy + Za(VE(Xk11) — V(X))

» Each mixing matrix Wy, Wh, W3 and W, is symmetric and
doubly stochastic.

» f1, P2, 83 and 34 are the corresponding 2nd highest
eigenvalues.
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Base Algorithm

Definitions

1 1 —
Xk = . in,k, Yk = . Zyi,k
i=1

i=1
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Base Algorithm

Definitions

1o 1 —
Xk = . E Xiks Yk = . E Yik
i—1 i=1

Xk Yk

% v 1% — x*|l2
B R _ Vi X
Xe= | . | €R™ Y= | €R™ 0 ne= | X — X2
_ _ IYx — ¥Veill2
Xk Yk
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Base Algorithm
Assumption

1. Each component function f; is u > 0 strongly convex and has
L > 0 Lipschitz continuous gradients.
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Base Algorithm

Assumption

1. Each component function f; is u > 0 strongly convex and has
L > 0 Lipschitz continuous gradients.

Suppose Assumption 1 holds and B1, B3 < 1 in Base Algorithm, then
Ja >0, s.t ||rg]|2 goes to 0 at a linear rate.

X1 = Z1Xy — oy,
Yir1 = Z3Yy + Za(VE(Xky1) — VF(xk))
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Base Algorithm Cases

The mixing matrixWhas g <1, Z=W® I,
GTM_1 (DIGing, EXTRA, ...)

Xit1 = ZX, — QY

Vi1 = ZY, + VE(Xky1) — V()
GTM_2 (NEXT, SONATA, ...)

X1 = Z(Xx — ayy)

Vi1 = ZYy + VF(Xkr1) — VE(xx)
GTM_3 (Aug-DMM, ATC-DIGing, ...)

X1 = Z(Xx — ayy)

Yirr = Z(y, + VEXky1) — VF(xk))
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Base Algorithm Cases - Rate of Convergence

Suppose Assumption 1 holds and o < 1, ||r||2 goes to 0 at a linear
rate upper bounded by the following express:ons

For GTM_1 max{ 5+F(25+\f)}
For GTM_2 max{l—%, ﬁ+\/07<2.5+\/%)}

For GTM_3 max{ 7“,ﬁ<1+f(25+\f))}

where k = ﬁ
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Base Algorithm Cases - Numerical Experiments

Almost Full network 3 = 0.25
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Figure: Quadratics, n = 16, p = 10, k = 10*
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Base Algorithm Cases - Numerical Experiments

Cyclic Network 5 =0.992
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Figure: Quadratics, n = 16, p = 10, k = 10*
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Multiple Communications

2

3

(a) Single Communication

09 01 0 O
0.1 08 01 O
W= 0 01 08 0.1

0 0 01 09
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 2 Communications

09 01 0 O
0.1 08 01 O
W= 0 01 08 0.1

0 0 01 09
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 2 Communications
09 01 O 0 0.82 0.17 0.01 O
W — 0.1 0.8 0.1 O W2 — 0.17 0.66 0.16 0.01
|0 01 08 0.1 ~|0.01 0.16 0.66 0.17

0 0 01 09 0 001 0.17 0.82
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Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 200 Communications

16/25



The University of Texas at Austin

Cockrell School of Engineering

Multiple Communications

1 4 1 4
2 3 2 3
(a) Single Communication (b) 200 Communications
09 01 O 0 0.25 0.25 0.25 0.25
W — 0.1 08 0.1 O Y200 — 0.25 0.25 0.25 0.25
0 0.1 08 0.1 0.25 0.25 0.25 0.25

0 0 01 09 0.25 0.25 0.25 0.25
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Multiple Communications

t — # of communication steps

Xit1 = ZiXk — aZby,,
Vi1 = Z5Yy + ZE(VE(Xki1) — VF(xy))
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Multiple Communications Cases

GTM_1

GTM_2

GTM_3

Xk41 = Zth —ayy
Vi1 = 2y + VE(xei1) — VF(xy)

Xir1 =25 (X — ayy)
Yir1 = 2, + VEXiy1) — VE(xy)

Xip1 = ZF (X — ay,)
Yie1 = ZE (Y + VE(Xis1) — VE(X))
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Multiple Communications - Rate of Convergence

Suppose Assumption 1 holds, number of communications is atleast 1
(t>1)and a < L, rk|l2 goes to 0 at a linear rate upper bounded by
the following expressions

For GTM_1 max{l—%, ﬁt—i—\/oI(ZS—l—\/E)}
For GTM_2 max{l _ 0‘2—“ Bt + @(2.5+ \/ﬁ,@t)}

For GTM_3 max{ ,5f(1+f(25+f)>}

where k = ﬁ
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Multiple Communications - Numerical Experiments

Cyclic Network 5 =0.992
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Figure: Quadratics, n = 16, p = 10, k = 10*
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Multiple Communications and Computations

t — # of communication steps
g — # of computation steps

Ui = Xg

Vi =Yy
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Multiple Communications and Computations

t — # of communication steps
g — # of computation steps

u; = Xy
Vi =Yy
Fori—1,2,...,g—1

U1 = U —avj,

Vit =V; + Vf(uj11) — VF(u,)
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Multiple Communications and Computations

t — # of communication steps
g — # of computation steps

U; = X
Vi =Yy
Fori—1,2,...,g—1

U1 = U —avj,

Vit =V; + Vf(uj11) — VF(u,)
X1 = Ziug — aZ5V,,
Yir1 = 23V + Zi(V(Xi1) — V()
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Multiple Communications and Computations

t — # of communication steps
g — # of computation steps

Suppose Assumption 1 holds, 51, B3 < 1, number of communication
steps is at least one (t > 1) and number of computation steps is finite
(g < o), then 3 v > 0, s.t. ||r||2 goes to 0 at a linear rate.

22/25



The University of Texas at Austin

Cockrell School of Engineering

Multiple Communications and Computations

t — # of communication steps
g — # of computation steps

Suppose Assumption 1 holds, 51, B3 < 1, number of communication
steps is at least one (t > 1) and number of computation steps is finite
(g < o), then 3 v > 0, s.t. ||r||2 goes to 0 at a linear rate.

Quantifying effect of multiple computations steps is ongoing work.
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Multiple Communications and Computations Cases
GTM_1
X1 = Z'Ug — avy
Yir1 = Z'Vg + VE(X11) — VF(ug)
— g — 1 compute steps

GTM_2
Xit1 = Z (Ug — avg)
Yir1 = Z'Vg + VE(X11) — VF(ug)
— g — 1 compute steps

GTM_3

Xit1 = Z" (Ug — avg)
Yir1 = Z° (Vg + VF(Xpp1) — V(ug))

— g — 1 compute steps
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Multiple Communications and Computations -
Numerical Experiments

Cyclic Network 5 =0.992
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Figure: Quadratics, n = 16, p = 10, k = 10*

24/25



The University of Texas at Austin

Cockrell School of Engineering

Conclusions

1. We propose generalised gradient tracking algorithms that
provide flexibility with respect to communication structure,
communication and computation overhead.

2. Adapting your algorithm to the system with this flexibility can
allow you to improve convergence rate.
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Questions?
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