

Balancing Communication and Computations in Gradient Tracking Methods for Distributed Optimization

Shagun Gupta

Raghu Bollapragada and Albert S. Berahas

Problem

$$\min_{x\in\mathbb{R}^p}f(x)=\sum_{i=1}^n f_i(x)$$

Each function f_i is only known to agent $i \forall i = 1, 2, ..., n$

Problem

$$\min_{x\in\mathbb{R}^p}f(x)=\sum_{i=1}^n f_i(x)$$

Each function f_i is only known to agent $i \forall i = 1, 2, ..., n$

(a) Sensor Networks You et al. 2013

(b) Machine Learning Tom Taulli, Forbes 2019 (c) Signal Processing

Signal Processing, SINTEF 2022

Consensus Optimization Problem

$$\min_{x_i \in \mathbb{R}^p} \sum_{i=1}^n f_i(x_i)$$

s.t. $x_i = x_j \quad \forall \ i, j \in \mathcal{E}$

Each node keeps a local copy $x_i \forall i = 1, 2, ..., n$

The University of Texas at Austin Cockrell School of Engineering

Consensus Optimization Problem

$$\min_{x_i \in \mathbb{R}^p} f(\mathbf{x}) = \sum_{i=1}^n f_i(x_i)$$

s.t. $(W \otimes I_p)\mathbf{x} = \mathbf{x}$

- x is a concatenation of all local x_i's
- **W** is a symmetric doubly-stochastic matrix that defines the connections in the network

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{np}, \quad W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

The University of Texas at Austin Cockrell School of Engineering

Consensus Optimization Problem

$$\min_{x_i \in \mathbb{R}^p} f(\mathbf{x}) = \sum_{i=1}^n f_i(x_i)$$

s.t. $\mathbf{Z} \mathbf{x} = \mathbf{x}$

- **x** is a concatenation of all local *x_i*'s
- W is a symmetric doubly-stochastic matrix that defines the connections in the network

$$\mathbf{Z} = W \otimes I_p \in \mathbb{R}^{np \times np}$$

Literature Review

1. Sublinearly Converging Methods

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos et al. 2012], **NN** [Mokhtari et al. 2017], **NEAR-DGD** [Berahas et al. 2018], ...

2. Linearly Converging Methods

 Push-pull [Pu, Shi, et al. 2020], DIGing [Nedic, Olshevsky, et al. 2017], EXTRA [Shi et al. 2015], SONATA [Sun et al. 2022], NEXT [Di Lorenzo and Scutari 2015],

 Aug-DGM [Xu et al. 2015], ...

3. Asynchronous Methods

[Bertsekas, Tsitsiklis, et al. 1989], [Ram, Veeravalli, and Nedic 2009], **HOGWILD** [Recht et al. 2011], [Wei and Ozdaglar 2013] ...

4. Stochastic Algorithms

DSGT and GSGT [Pu and Nedić 2021], ProxiSkip [Mishchenko et al. 2022], ...

Distributed Gradient Descent (DGD)

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos et al. 2012]

Constant (α) : Linear Convergence to neighbourhood O(α)
 Diminishing (α) : Sublinear convergence to solution

Distributed Gradient Descent (DGD)

DGD [Bertsekas, Tsitsiklis, et al. 1989, Nedic and Ozdaglar 2009, Sundhar Ram et al. 2010, Tsianos et al. 2012]

$$\mathbf{x}_{k+1} = \underbrace{\mathbf{Z} \mathbf{x}_k}_{Communication} - \alpha \underbrace{\nabla \mathbf{f}(\mathbf{x}_k)}_{Computation}$$

[Berahas et al. 2018] proposed a variant of DGD where increasing communications achieves linear convergence under constant α .

Gradient Tracking Algorithms

Push-pull [Pu, Shi, et al. 2020], **DIGing** [Nedic, Olshevsky, et al. 2017], **EXTRA** [Shi et al. 2015], **SONATA** [Sun et al. 2022], **NEXT** [Di Lorenzo and Scutari 2015], **Aug-DGM** [Xu et al. 2015], ...

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z} \, \mathbf{x}_k - \alpha \mathbf{y}_k, \\ \mathbf{y}_{k+1} &= \mathbf{Z} \, \mathbf{y}_k + \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k) \end{aligned}$$

$$\mathbf{x}_{k} = \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{n,k} \end{bmatrix} \in \mathbb{R}^{np}, \quad \mathbf{y}_{k} = \begin{bmatrix} y_{1,k} \\ y_{2,k} \\ \vdots \\ y_{n,k} \end{bmatrix} \in \mathbb{R}^{np}, \quad \nabla \mathbf{f}(\mathbf{x}_{k}) = \begin{bmatrix} \nabla f_{1}(x_{1,k}) \\ \nabla f_{2}(x_{2,k}) \\ \vdots \\ \nabla f_{n}(x_{n,k}) \end{bmatrix} \in \mathbb{R}^{np}$$

- Use an additional dual variable \mathbf{y}_k to track the gradient
- Constant α : Linear converge to solution

This Talk

- 1. We develop generalised gradient tracking algorithms for distributed optimization with flexibility in:
 - Communication Structure
 - Multiple Communication Steps
 - Multiple Computation Steps
- 2. Provide convergence conditions for each level of flexibility.
- 3. Illustrate benefits of these methods with numerical analysis.

Single communication and computation steps in each iteration.

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}_1 \mathbf{x}_k - \alpha \mathbf{Z}_2 \mathbf{y}_k, \\ \mathbf{y}_{k+1} &= \mathbf{Z}_3 \mathbf{y}_k + \mathbf{Z}_4 (\nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k)) \end{aligned}$$

- Each mixing matrix W_1 , W_2 , W_3 and W_4 is symmetric and doubly stochastic.
- ▶ $\beta_1, \beta_2, \beta_3$ and β_4 are the corresponding 2nd highest eigenvalues.

Definitions

$$\bar{x}_k = \frac{1}{n} \sum_{i=1}^n x_{i,k}, \quad \bar{y}_k = \frac{1}{n} \sum_{i=1}^n y_{i,k}$$

Definitions

$$\bar{x}_k = \frac{1}{n} \sum_{i=1}^n x_{i,k}, \quad \bar{y}_k = \frac{1}{n} \sum_{i=1}^n y_{i,k}$$

$$\bar{\mathbf{x}}_{k} = \begin{bmatrix} \bar{x}_{k} \\ \bar{x}_{k} \\ \vdots \\ \bar{x}_{k} \end{bmatrix} \in \mathbb{R}^{np}, \quad \bar{\mathbf{y}}_{k} = \begin{bmatrix} \bar{y}_{k} \\ \bar{y}_{k} \\ \vdots \\ \bar{y}_{k} \end{bmatrix} \in \mathbb{R}^{np}, \quad r_{k} = \begin{bmatrix} \|\bar{x}_{k} - x^{*}\|_{2} \\ \|\mathbf{x}_{k} - \bar{\mathbf{x}}_{k}\|_{2} \\ \|\mathbf{y}_{k} - \bar{\mathbf{y}}_{k}\|_{2} \end{bmatrix}$$

Assumption

1. Each component function f_i is $\mu > 0$ strongly convex and has L > 0 Lipschitz continuous gradients.

Assumption

1. Each component function f_i is $\mu > 0$ strongly convex and has L > 0 Lipschitz continuous gradients.

Theorem

Suppose Assumption 1 holds and $\beta_1, \beta_3 < 1$ in Base Algorithm, then $\exists \alpha > 0$, s.t. $||r_k||_2$ goes to 0 at a linear rate.

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}_1 \mathbf{x}_k - \alpha \mathbf{Z}_2 \mathbf{y}_k, \\ \mathbf{y}_{k+1} &= \mathbf{Z}_3 \mathbf{y}_k + \mathbf{Z}_4 (\nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k)) \end{aligned}$$

Base Algorithm Cases

The mixing matrix W has $\beta < 1$, $\mathbf{Z} = W \otimes I_p$

GTM_1 (DIGing, EXTRA, ...)

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}\mathbf{x}_k - \alpha \mathbf{y}_k \\ \mathbf{y}_{k+1} &= \mathbf{Z}\mathbf{y}_k + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k) \end{aligned}$$

GTM_2 (NEXT, SONATA, ...)

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z} \left(\mathbf{x}_k - \alpha \mathbf{y}_k \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z} \mathbf{y}_k + \nabla \mathbf{f} (\mathbf{x}_{k+1}) - \nabla \mathbf{f} (\mathbf{x}_k) \end{aligned}$$

GTM_3 (Aug-DMM, ATC-DIGing, ...)

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z} \left(\mathbf{x}_k - \alpha \mathbf{y}_k \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z} \left(\mathbf{y}_k + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k) \right) \end{aligned}$$

Base Algorithm Cases - Rate of Convergence

Theorem

Suppose Assumption 1 holds and $\alpha \leq \frac{1}{L} ||r_k||_2$ goes to 0 at a linear rate upper bounded by the following expressions

For GTM_1 max
$$\left\{1 - \frac{\alpha\mu}{2}, \ \beta + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa}\right)\right\}$$

For GTM_2 max $\left\{1 - \frac{\alpha\mu}{2}, \ \beta + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa\beta}\right)\right\}$
For GTM_3 max $\left\{1 - \frac{\alpha\mu}{2}, \ \beta \left(1 + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa}\right)\right)\right\}$

where $\kappa = \frac{L}{\mu}$.

Base Algorithm Cases - Numerical Experiments

Almost Full network $\beta = 0.25$

Figure: Quadratics, n = 16, p = 10, $\kappa = 10^4$

Base Algorithm Cases - Numerical Experiments

Cyclic Network $\beta = 0.992$

Figure: Quadratics, n = 16, p = 10, $\kappa = 10^4$

(a) Single Communication

$$W = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 \\ 0.1 & 0.8 & 0.1 & 0 \\ 0 & 0.1 & 0.8 & 0.1 \\ 0 & 0 & 0.1 & 0.9 \end{bmatrix}$$

(a) Single Communication

(b) 2 Communications

$$W = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 \\ 0.1 & 0.8 & 0.1 & 0 \\ 0 & 0.1 & 0.8 & 0.1 \\ 0 & 0 & 0.1 & 0.9 \end{bmatrix}$$

(a) Single Communication

(b) 2 Communications

$$W = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 \\ 0.1 & 0.8 & 0.1 & 0 \\ 0 & 0.1 & 0.8 & 0.1 \\ 0 & 0 & 0.1 & 0.9 \end{bmatrix} \qquad \qquad W^2 = \begin{bmatrix} 0.82 & 0.17 & 0.01 & 0 \\ 0.17 & 0.66 & 0.16 & 0.01 \\ 0.01 & 0.16 & 0.66 & 0.17 \\ 0 & 0.01 & 0.17 & 0.82 \end{bmatrix}$$

(a) Single Communication

(b) 200 Communications

(a) Single Communication

(b) 200 Communications

$$W = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 \\ 0.1 & 0.8 & 0.1 & 0 \\ 0 & 0.1 & 0.8 & 0.1 \\ 0 & 0 & 0.1 & 0.9 \end{bmatrix} \qquad \qquad W^{200} = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}$$

t
ightarrow # of communication steps

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}_1^t \mathbf{x}_k - \alpha \mathbf{Z}_2^t \mathbf{y}_k, \\ \mathbf{y}_{k+1} &= \mathbf{Z}_3^t \mathbf{y}_k + \mathbf{Z}_4^t (\nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k)) \end{aligned}$$

Multiple Communications Cases

GTM_1

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^t \mathbf{x}_k - \alpha \mathbf{y}_k \\ \mathbf{y}_{k+1} &= \mathbf{Z}^t \mathbf{y}_k + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k) \end{aligned}$$

 GTM_2

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^t \left(\mathbf{x}_k - \alpha \mathbf{y}_k \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z}^t \mathbf{y}_k + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_k) \end{aligned}$$

GTM_3

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^{t} \left(\mathbf{x}_{k} - \alpha \mathbf{y}_{k} \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z}^{t} \left(\mathbf{y}_{k} + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{x}_{k}) \right) \end{aligned}$$

Multiple Communications - Rate of Convergence

Theorem

Suppose Assumption 1 holds, number of communications is atleast 1 $(t \ge 1)$ and $\alpha \le \frac{1}{L}$, $||r_k||_2$ goes to 0 at a linear rate upper bounded by the following expressions

For GTM_1 max
$$\left\{1 - \frac{\alpha\mu}{2}, \ \beta^t + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa}\right)\right\}$$

For GTM_2 max $\left\{1 - \frac{\alpha\mu}{2}, \ \beta^t + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa\beta^t}\right)\right\}$
For GTM_3 max $\left\{1 - \frac{\alpha\mu}{2}, \ \beta^t \left(1 + \sqrt{\alpha L} \left(2.5 + \sqrt{\kappa}\right)\right)\right\}$

where $\kappa = \frac{L}{\mu}$.

Multiple Communications - Numerical Experiments

Cyclic Network $\beta = 0.992$

Figure: Quadratics, n = 16, p = 10, $\kappa = 10^4$

 $t \rightarrow \#$ of communication steps $g \rightarrow \#$ of computation steps

> ${\bf u}_1 = {\bf x}_k$ $\mathbf{v}_1 = \mathbf{y}_k$

 $t \rightarrow \#$ of communication steps $g \rightarrow \#$ of computation steps

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{x}_k \\ \mathbf{v}_1 &= \mathbf{y}_k \\ \text{For } i \to 1, 2, ..., g - 1 \\ \mathbf{u}_{i+1} &= \mathbf{u}_i - \alpha \mathbf{v}_i, \\ \mathbf{v}_{i+1} &= \mathbf{v}_i + \nabla \mathbf{f}(\mathbf{u}_{i+1}) - \nabla \mathbf{f}(\mathbf{u}_u) \end{aligned}$$

 $t \rightarrow \#$ of communication steps $g \rightarrow \#$ of computation steps

> ${\bf u}_1 = {\bf x}_k$ $\mathbf{v}_1 = \mathbf{y}_k$ For $i \rightarrow 1, 2, \dots, g-1$ $\mathbf{u}_{i+1} = \mathbf{u}_i - \alpha \mathbf{v}_i$ $\mathbf{v}_{i+1} = \mathbf{v}_i + \nabla \mathbf{f}(\mathbf{u}_{i+1}) - \nabla \mathbf{f}(\mathbf{u}_{i})$ $\mathbf{x}_{k+1} = \mathbf{Z}_1^t \mathbf{u}_{\varphi} - \alpha \mathbf{Z}_2^t \mathbf{v}_{\varphi},$ $\mathbf{y}_{k+1} = \mathbf{Z}_{3}^{t}\mathbf{v}_{g} + \mathbf{Z}_{4}^{t}(\nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{v}_{g}))$

- t
 ightarrow # of communication steps
- g
 ightarrow # of computation steps

Theorem

Suppose Assumption 1 holds, $\beta_1, \beta_3 < 1$, number of communication steps is at least one ($t \ge 1$) and number of computation steps is finite ($g < \infty$), then $\exists \alpha > 0$, s.t. $||r_k||_2$ goes to 0 at a linear rate.

- t
 ightarrow # of communication steps
- g
 ightarrow # of computation steps

Theorem

Suppose Assumption 1 holds, $\beta_1, \beta_3 < 1$, number of communication steps is at least one ($t \ge 1$) and number of computation steps is finite ($g < \infty$), then $\exists \alpha > 0$, s.t. $||r_k||_2$ goes to 0 at a linear rate.

Quantifying effect of multiple computations steps is ongoing work.

Multiple Communications and Computations Cases *GTM_1*

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^{t} \mathbf{u}_{g} - \alpha \mathbf{v}_{g} \\ \mathbf{y}_{k+1} &= \mathbf{Z}^{t} \mathbf{v}_{g} + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{u}_{g}) \\ &\rightarrow g - 1 \text{ compute steps} \end{aligned}$$

GTM_2

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^{t} \left(\mathbf{u}_{g} - \alpha \mathbf{v}_{g} \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z}^{t} \mathbf{v}_{g} + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{u}_{g}) \\ &\rightarrow g - 1 \text{ compute steps} \end{aligned}$$

GTM_3

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{Z}^t \left(\mathbf{u}_g - \alpha \mathbf{v}_g \right) \\ \mathbf{y}_{k+1} &= \mathbf{Z}^t \left(\mathbf{v}_g + \nabla \mathbf{f}(\mathbf{x}_{k+1}) - \nabla \mathbf{f}(\mathbf{u}_g) \right) \\ &\rightarrow g - 1 \text{ compute steps} \end{aligned}$$

Multiple Communications and Computations -Numerical Experiments

Cyclic Network $\beta = 0.992$

Figure: Quadratics, n = 16, p = 10, $\kappa = 10^4$

Conclusions

- 1. We propose generalised gradient tracking algorithms that provide flexibility with respect to communication structure, communication and computation overhead.
- 2. Adapting your algorithm to the system with this flexibility can allow you to improve convergence rate.

Thank You! Questions?

Backup Slides